
Civet: An Efficient Java Partitioning Framework for Hardware Enclaves

Chia-Che Tsai
Texas A&M University

Jeongseok Son
UC Berkeley

Bhushan Jain
UNC Chapel Hill

John McAvey
Hendrix College

Raluca Ada Popa
UC Berkeley

Donald E. Porter
UNC Chapel Hill

Abstract
Hardware enclaves are designed to execute small pieces of
sensitive code or to operate on sensitive data, in isolation from
larger, less trusted systems. Partitioning a large, legacy appli-
cation requires significant effort. Partitioning an application
written in a managed language, such as Java, is more challeng-
ing because of mutable language characteristics, extensive
code reachability in class libraries, and the inevitability of
using a heavyweight runtime.

Civet is a framework for partitioning Java applications into
enclaves. Civet reduces the number of lines of code in the
enclave and uses language-level defenses, including deep
type checks and dynamic taint-tracking, to harden the enclave
interface. Civet also contributes a partitioned Java runtime de-
sign, including a garbage collection design optimized for the
peculiarities of enclaves. Civet is efficient for data-intensive
workloads; partitioning a Hadoop mapper reduces the en-
clave overhead from 10× to 16–22% without taint-tracking
or 70–80% with taint-tracking.

1 Introduction

Hardware enclaves [1–4] are designed to protect sensitive
code and data from compromised OSes, hypervisors, or off-
chip devices. An enclave includes a memory region protected
by the CPU and encrypted in DRAM. An enclave can also
attest the integrity of execution to a remote entity. So far,
many enclave-protected systems have been proposed [5–8],
including commercial cloud offerings from Microsoft, IBM,
and Alibaba [9, 10]. Speaking broadly, there is an increas-
ing understanding of how to use enclaves to protect a single
client’s code in a multi-tenant cloud.

The design space for enclaves quickly becomes murkier for
complex cloud applications that contain sensitive and insen-
sitive components, and that are written in an object-oriented,
managed language. These applications often integrate large
code bases and data from both users and cloud providers,
who may distrust each other. Take Hadoop [11] as example:

Ubuntu 16.04 Graphene-SGX
Total time (s) Total time (s) (∆)

Mappers 45.4 +/- 0.5 501.0 +/- 9.4 (10.0×)
Reducers 35.2 +/- 0.2 393.1 +/- 8.1 (10.2×)

Garbage collection 1.9 +/- 0.0 14.8 +/- 0.9 (6.6×)

Table 1: Comparison of a non-partitioned Hadoop job be-
tween Ubuntu and Graphene-SGX [16]

user-defined mappers and reducers may operate on sensitive
data, yet the orchestration and resource management frame-
work is controlled by the cloud provider. Although there are
some solutions for running an entire application in an en-
clave [12–15], this approach provides no isolation between
the user and cloud provider. Moreover, dropping an entire
cloud framework written in a managed language like Java into
an enclave is prohibitively expensive, as illustrated in Table 1.
Experiment parameters are detailed in §9.

Ideally, an application like Hadoop should be partitioned,
so that only sensitive code and data are inside the enclave.
Figure 1(a) illustrates the non-partitioned model for protecting
the entire Hadoop framework. The model places a large
portion of framework code in the trusted computing base
(TCB), despite the fact that this code need not directly interact
with any sensitive user data.

This paper presents Civet, a framework for partitioning a
Java application into trusted classes that run inside enclaves,
and untrusted classes that run outside enclaves. Figure 1(b)
shows Civet’s partitioned model, which reduces the in-enclave
TCB to sensitive classes. The partitioned model establishes a
hardware-enforced isolation boundary between the untrusted
“system” and trusted pieces of application logic within a large,
legacy code base.

Prior work [17–19] has explored the idea of partitioning an
application for enclaves, yet no solution can partition a Java
application that depends on complex class libraries and a com-
plex runtime. Among prior work, TLR (Trusted Language
Runtime) [17] is a framework for running portions of a mo-

Figure 1: A comparison between the non-partitioned model and Civet’s partitioned model.

HDFSYarn Scheduler

Thread

 Commodity JVM

MapTask(s) ReduceTask(s)

map(K,V,Context) reduce(K,V[],Context)

JNI Standard Classes

Direct InvocationEnclave Protection

Thread Thread Thread Thread Thread

(a) Non-partitioned model needs to run the en-
tire Hadoop framework in an enclave.

HDFSYarn Scheduler

Thread

 Commodity JVM

MapTask(s) ReduceTask(s)

JNI Standard Classes

Partitioned
JVM

Enclave Invocation

Direct Invocation

Enclave Protection

Thread Thread Thread Thread Thread

map(K,V,Context) reduce(K,V[],Context)

Civet Runtime Framework

(b) Civet runs only the sensitive code, e.g., map/reduce, in an en-
clave without trusting the rest of the Hadoop framework.

bile application, written in C#, inside ARM’s TrustZone [20].
Although TLR provides a mechanism for separating sensitive
logic from the untrusted OS and application code, mobile
applications are much simpler than most cloud applications.
TLR provides no solutions for hardening the trusted code
against Iago-style attacks [21] that leverage subtle language
properties such as polymorphism. Intel’s Software Guard Ex-
tensions (SGX) [1], a more common platform for emerging
cloud deployments of hardware enclaves, has a much tighter
memory budget than TrustZone; this memory restriction can
be especially problematic for Java workloads. Glamdring [18]
is another framework for automatically partitioning C/C++
programs into enclaves. Glamdring reduces the TCB using
program slicing, but does not generate code to protect against
malicious inputs. In our experience, a key challenge in parti-
tioning a legacy application is hardening the software at the
newly created enclave boundary.

Civet addresses various challenges of partitioning a man-
aged, object-oriented language, using Java as a representative
example. Our framework is prototyped on SGX, but many of
the design principles are independent of SGX.

1.1 Challenges

To partition a Java application, developers face several chal-
lenges that reduce security compared to the original applica-
tion, that fail to reduce the TCB, or that require memory and
other resources in excess of the constraints of SGX. We iden-
tify the following challenges for partitioning an application
written in a managed, object-oriented language, such as Java:

• Complexity of defending partition interfaces: Adding an in-
terface between trusted and untrusted code requires adding
a defense; this is already a challenge, but the language
features of Java further complicate this defense. With poly-
morphism, untrusted code may override the behavior of a
method by creating a subclass. By accepting objects from
outside the enclave as input, an enclave can become po-
tentially vulnerable to a type confusion attack [22]. The
input can be subtyped to alter the behavior of the enclave

code, with an overridden method potentially sending sen-
sitive data out of the enclave, or using reflection to load
unexpected code into the enclave.

• Large application code footprint: Even a “Hello World”
class can introduce millions of lines of code from standard
and third-party libraries. Many classes rely on JNIs (Java
Native Interfaces), which are written in C/C++ and are
notoriously prone to vulnerabilities [23]. Finally, a feature-
complete JVM like OpenJDK contains up to a million lines
of code written in Java and C/C++.

• A runtime that requires significant resources and system
support: Even a small partition of a Java application needs
a full-featured runtime. Designing runtimes for enclaves
is an open problem—a commodity JVM like OpenJDK
makes many assumptions that are violated by enclaves,
such as the presence of a large, demand-allocated virtual
memory and a large pool of internal maintenance threads.
Standard runtime behaviors, such as garbage collection, are
not tuned for the memory restriction of SGX.

1.2 Goals and Contributions
To address these challenges specific to supporting managed
languages in enclaves, Civet includes both compile-time tools
and an execution framework with the following goals:

• Reducing partitioning effort: When introducing an iso-
lation boundary into a large codebase, reasoning about
the resulting security implications can be challenging—
including what code ultimately runs in the enclave, what
data can enter and exit the enclave, and by what code paths.
To assist the developer in this reasoning process, we add
static analysis and dynamic code instrumentation tools that
can both reduce the code footprint in the enclave, as well
as give the developer visibility into what can run in the
enclave, data ingress, and data egress.

• Mitigating partitioning pitfalls: Partitioning can expose
a larger attack surface than running the entire application
inside enclaves. A goal of Civet is to mitigate a majority of

the non-side-channel security pitfalls caused by partition-
ing, such as type confusion attacks or accidental leakage
through data flow. To this end, Civet analyzes the applica-
tion and applies restrictions to behaviors that are impossible
before partitioning. For type confusion attacks, we present
an efficient strategy for type-checking any input, not only
at the root of an object, but at every field and array element.
Civet also uses taint-tracking [24] to block outputs that are
tainted by sensitive information.

• Removing unreachable code: Even in a managed language,
unreachable code in the TCB is a potential liability, as
dynamic class loading or polymorphic behavior can lead
to invisible or unexpected execution paths. During offline
analysis, Civet removes unreachable classes and methods.
The result is a trusted JAR file that is significantly smaller
than the original collection of classes libraries, improv-
ing the auditability and lowering the risk of unexpected
behaviors in the enclave.

• Optimizing garbage collection for enclaves: SGX has a
hardware limitation of 93.5 MB for the Enclave Memory
Cache (EPC). If the enclaves on a system access more
DRAM than this, the OS will swap the memory in and out
of EPC, causing substantial overhead [13, 25]. Most GCs
scan the heap and, thus, perform poorly when the heap
is sparsely populated and is larger than the EPC. Civet
includes a GC design that adds a middle generation, for
preventing full-heap GC while keeping GC faster for the
youngest objects. This optimizes GC to match the perfor-
mance characteristics of enclaves.

The contributions of this paper are:
• A framework that leverages Java language features to ana-

lyze and partition applications to run in enclaves (§4).
• A system to harden the enclave boundary. This includes

type-checking polymorphic inputs (§5), and mitigating un-
intended information leakage from enclaves (§6).

• A lightweight JVM partitioned for enclaves (§8).
• A study of GC and a three-generation GC design optimized

for enclaves (§7.2).

2 Related Work

Enclave frameworks and SDKs. Intel SGX introduces
new design challenges, such as validating system call results
from a malicious OS [21]. The state-of-the-art solution is
a library OS [12, 16] or a shield layer [13, 26] to hoist OS
functionality into the enclave and/or validate inputs from an
untrusted OS. Developers can also write enclave code from
scratch, using an SGX SDK [27–29]. Applications written
in a managed language are commonly rewritten for SGX in
another language; for example, VC3 [5] sacrifices the benefits
of using a type-safe language and compatibility by rewriting
the Hadoop code in C++.

Partitioned trusted execution. Prior work reduces trusted
code size through program slicing and/or generating the in-
terface between partitions. TLR [17] and Rubinov et al. [30]
partition android programs to run in ARM TrustZone [20].
Glamdring [18] partitions C/C++ programs for enclaves us-
ing static program slicing. SeCage [19] partitions an appli-
cation into secret compartments with hardware-based isola-
tion. GoTEE [31] compiles Go functions into enclaves, with a
lightweight runtime and APIs for shielding. Brenner et al. [32]
run microservices in enclaves, apart from the orchitestration
framework. EnclaveDom [33] leverages Memory Protection
Keys (MPK) for privilege separation inside enclaves.

Java partitioning frameworks. A number of tools parti-
tion a Java application for modularity. Addistant [34] and
J-Orchestra [35] automatically divide Java applications across
multiple hosts or JVMs. Zdancewic et al. [36] use annotations
to partition an application, with static analysis to enforce data
flow policies. Swift [37] partitions web applications such that
security-critical data remains on the trusted server.

Capability languages such as E [38], Joe-E [39], Oz-E [40],
and Emily [41] define the object-capability approach for vari-
ous languages, and identify patterns for secure programming.
Compared to these capability-based frameworks, Civet en-
forces coarse-grained security policies by simply separating
trusted and untrusted objects, and hardening the boundary
with hardware enclaves.

3 Threat Model and Security Properties

Civet adopts a similar threat model to many recent SGX
projects [5, 12–15, 18, 26, 31]. All in-enclave software is
trusted and everything else that is outside the enclave is not
trusted. Because any software can have bugs, which an at-
tacker could exploit, one of Civet’s goals is to decrease the
TCB running in the enclave, as well as reduce the attack
surface of the enclave code exposed to the untrusted host.

In moving from a model where one can trust the OS and hy-
pervisor, to an SGX-style threat model, where host software
and even parts of the application are potentially compromised,
one must design enclave code to resist several new threats.
First, one must ensure that the code in the enclave is really
what the authors intended. Although SGX can measure the
contents of an enclave at start time, the enclave code itself
must be responsible to handle dynamic loading of additional
classes; one cause for concern is misleading the enclave code
to load a malicious class that could leak sensitive data or
compromise the integrity of the code in the enclave. Sec-
ond, partitioning an application to run portions of code in an
enclave creates a new intra-application interface. Although
good software engineering involves explicating assumptions
about the state of the application when a function is called,
perhaps even as comments, one must now carefully check
these assumptions at the enclave boundary. This general class

of semantic attacks against an enclave interface that violate a
tacit assumption in the code are called Iago attacks [21]. A
third major concern is that sensitive data not inadvertently
leak from the enclave. In refactoring a large piece of legacy
code, it is easy to accidentally leave a code path that writes
data to an out-of-enclave object. This third concern is less of
an attack vector per se, so much as an aspect of this work that
is highly error-prone. The security properties discussed later
in this section consider each of these concerns.

Untrusted components. An attacker can compromise any
off-chip devices (e.g., DRAM, accelerators, I/O devices) and
any code running outside the enclave, including the host OS,
system software, or hypervisor.

Trusted components. Civet trusts the CPU and any other
hardware in the CPU package, as well as any binaries run-
ning inside the enclave. The enclave will include the trusted
Java classes, the in-enclave JVM, the remaining trusted JNIs,
Graphene-SGX, GNU libc, and Civet’s in-enclave framework.

We assume attackers have the source code of the applica-
tion and Civet, and may attempt Iago-type attacks [21] by
manipulating inputs to enclave interfaces, including class-
level, JNI-level, and system-level APIs. For system-level
APIs, Civet inherits shielding code from Graphene; inasmuch
as a Civet partition extends the enclave attack surface with
class-level interfaces, Civet adds additional, language-based
defenses on the data ingress and egress of the enclave.

Out-of-scope attacks. Civet assumes a correctly imple-
mented CPU. Civet does not protect against known limitations
of current enclave implementations like Intel SGX, which
include rollback attacks [42], micro-architectural vulnerabili-
ties [43, 43, 44, 44–49], cache timing attacks [45, 50, 51], and
denial-of-service from the host. Solving these problems is
orthogonal to the contributions of Civet.

Balancing TCB and Attack Surface. Compared to run-
ning an entire application in an end-to-end shielded frame-
work [12,13,15,16], partitioning an application has the advan-
tage of reducing the TCB that directly interacts with sensitive
code and data, as well as minimizing enclave footprint (impor-
tant for performance on current enclave hardware). However,
partitioning introduces new attack surface between the appli-
cation code inside and outside the enclave. In a framework
that shields a POSIX-style interface, one can simply use an
existing shield that protects against many issues, such as Iago
attacks [21]. When one designs a custom enclave interface af-
ter partitioning a large code base, one has to design shielding
code between code that was originally mutually trusted.

A key goal of Civet is to help developers harden this new
enclave interface. For application-level vulnerabilities, Civet
requires the developers to design defenses for the interac-
tion between the trusted classes inside the enclave and the
untrusted classes outside the enclave, but provides language
tools to help developers reason about these defenses, such as

injection of shield classes and taint-tracking. Civet hardens
the partitioned JVM for developers, and inherits shielding of
OS-level interfaces from Graphene-SGX.

We note that partitioning an application can also potentially
introduce new side-channel vulnerabilities. Side channels and
their defenses are out of the scope of this paper.

Security properties. Civet is designed to enforce the fol-
lowing security properties:

• I–Code integrity and remote attestation: Civet checks the
integrity of all code running inside the enclave, includ-
ing the Java classes, Java virtual machine, imported Java
Native Interface (JNI) libraries, system libraries, and the
Graphene-SGX library OS. A remote entity can use the re-
mote attestation feature of hardware enclaves to check the
measurement of a Civet application. This property is funda-
mental to hardware enclaves and is necessary for defending
against code modification or code injection attacks.

• II–Type integrity on enclave interfaces: Polymorphism at
the enclave interface causes confusion for developers when
writing shielding code. Civet ensures that the inputs to a
method exported as an enclave interface cannot be arbitrar-
ily subtyped as classes that are impossible in the original
application. With type integrity on enclave inputs, develop-
ers can safely use object-oriented APIs for semantic checks
or cryptographic protections. This property is necessary
for preventing the type confusion attacks described in §5.1.

• III–Explicit data declassification: Data provisioned from a
secure channel or derived from this provisioned data inside
the enclave cannot be copied outside the enclave unless
explicitly declassified by the developer. Civet tracks both
the explicit flows from operating on tainted objects and, op-
tionally, the implicit flows from branching based on tainted
values. Developers need to either encrypt or sanitize a
tainted object for declassification, or the object cannot re-
turn to untrusted code. This property is to prevent semantic
bugs in application or defense code from accidentally leak-
ing the secrets from the enclaves. Side channels and other
implicit flows are out of scope.

4 Partitioning Class Libraries

In this section, we explain how to partition an application
with Civet; and how Civet creates a concise, robust partition
with little input from the developer.

4.1 The Partitioning Workflow
Step 1: Identifying enclave interfaces. To create a parti-
tion, Civet requires developers to identify one or more entry
classes within the application, to serve as the interface be-
tween enclave code and non-enclave code. Figure 2 illustrates
partitioning a Hadoop mapper with an entry class.

Regex
Mapper

Method Invocation

Application (Hadoop)

K

map(K,V,Context)

Entry Class V
Untrusted

inputs

K V

Trusted Domain

Trusted
classes

Enclave
.JARContext

Context

Move into
 the trusted domain

Figure 2: Partitioning model of Civet. The entry classes
define a trusted domain inside an application, with all the
trusted classes collect into a JAR file.

We note that many other partitioning systems involve spec-
ifying sensitive data rather than defining a code interface;
we selected the code option in part because one use case for
SGX is protecting sensitive algorithms, and in part because
we believe that this approach better matches programmers’
intuition. We leave a more careful study of this design choice
for future work.

A set of entry classes define a trusted domain, in which
all of the classes that implement the enclave functionality are
mutually trusted. Every call from an untrusted class to an
entry class transitions execution into the enclave.

At build time, Civet packs all of the trusted classes into a
single JAR file, named as enclave.jar, which contains all of
the Java code that can be loaded into the enclave. The input
to this tool is a configuration written in XML (illustrated in
Figure 3), with each entry class listed as an <EntryClass>
rule. The resulting JAR file can be audited and signed by
developers. For a class loaded by reflection, Civet relies
on the developer explicitly white-list the class, by adding
an <Include> rule to the configuration. Users can add
<Include> rules gradually when encountering resolution
errors during testing, or search for dynamically-loaded classes
in the enclave code. The use of reflection is extremely com-
mon in commercial Java applications [52]. Parallel to this
work, many papers [52–54] have shown that the usage of
reflection calls can be estimated by static analysis. For iden-
tifying trusted classes (§4.2), Civet also requires the user to
specify the main class of the whole, untrusted program, using
an <MainClass> rule.

Step 2: Specifying enclave protections. After defining the
entry classes, the developers can specify extra shield classes
that leverage object orientation to wrap the entry classes.
Shield classes are primarily used for tasks such as sanitiz-
ing or decrypting inputs, or encrypting outputs. Developers
can write a shield class without changing the source code
of the original application. Figure 3 shows an example of a
shield class for the Hadoop mapper partitioned in Figure 2.
RegexMapperShield is a wrapper to RegexMapper for de-
crypting the inputs and encrypting the outputs. A shield class
is defined in the configuration using a <ShieldClass> rule,

<EntryClass>RegexMapper</EntryClass>
<MainClass>Grep</MainClass>
<ShieldClass>RegexMapperShield</ShieldClass>
<Include>com.sun.crypto.provider.AESCipher</Include>
<Include>com.sun.crypto.provider.PCBC</Include>
<Declassify>AESCipher.encrypt</Declassify>

class RegexMapperShield<K> extends RegexMapper<K> {
Cipher cipher; // Initialized in the constructor
public void map(K k, Text v, Context context) {

cipher.init(Cipher.DECRYPT_MODE,
Enclave.getSealKey(), new IvParameterSpec(k));

v = new Text(cipher.doFinal(v.getBytes()));
super.map(k, v, context); // Call the actual mapper
// Further encrypt the context if necessary

}
}

Figure 3: The configuration (in XML) and shielding class for
partitioning a hadoop mapper (RegexMapper).

Partitioned JVM

Entry
Class X

Trusted Classes

A B C

LibOS

Untrusted
Classes

Native JVM

Enclave Transition JNI

Untrusted OS

Trusted Domain Enclave

Proxy
Class X

LibOS Untrusted Layer

new X()

App-level
RPC

OS-level RPC

User Process

Runtime-level
RPC

SGX Driver

Sh
ie

ld

Figure 4: Components of the Civet framework. Civet maps en-
try classes to a trusted domain inside enclaves. The untrusted
code accesses the trusted objects through RPCs by invoking
proxy classes. Each enclave also contains a partitioned JVM
(§8.2) and a library OS (LibOS).

and as a benefit, the definition is transparent to the entry class
as well as the call sites in the non-enclave code.

Civet also synthesizes extra protections, including type-
checking inputs and dynamic taint-tracking. Civet defines
a sensitive object to be an object instantiated inside the
trusted code or provisioned from a secure channel. A
<Declassify> rule can specify a method to declassify the
outputs to the untrusted domain. If an output is not declas-
sified, Civet uses dynamic taint-tracking (§6.2) to block any
object from leaving the enclave if the object contains infor-
mation derived from a sensitive object.

Step 3: Connecting trusted and untrusted domains. For
each entry class, Civet synthesizes a proxy class that marshals
inputs to the enclave and invokes an RPC to code running
in the enclave. Figure 4 shows the components of the Civet
framework, including a proxy class. An untrusted application,
such as the Hadoop framework, can create an enclave by
instantiating the proxy classes. A proxy class includes JNI to
invoke the hardware level operations to enter an enclave. The
code of the entry class runs inside the enclave.

The underlying JVM or library OS may exit the enclave
only to 1) return from an application-level call into an entry
class, and 2) to implement runtime-level or OS-level func-
tionality. Developers need only concern themselves with the
first case. For the second case, the JVM and the library OS
include their own shielding code.

Specifically, Civet disallows enclave Java code to call out
to non-enclave Java code, which we call a nested exit, for two
reasons: (1) Designing shielding strategies for nested exits
can be challenging; (2) A nested exit exports intermediate
states outside the enclave and increases the risk of data leak-
age, corruption, and side channels. The downside is that the
enclave may include more supporting trusted classes and/or
export more entry classes for the untrusted code to access
results inside the enclave. All of our application examples
(§9) were easily partitioned without nested exits.

4.2 Identifying Trusted Code
A key service Civet provides for developers is creating a
single JAR file with all of the code that should be reachable
from the entry classes or that is white-listed with an include
directive, but no other code.

In the presence of polymorphism, this analysis is best done
with an automated static analysis. For example, Hadoop uses
an interface called Writable to represent 52 different types
of data. Polymorphism multiplies the complexity of the se-
curity analysis, and obscures the implications of bringing a
class into an enclave. In a source-code-level audit, developers
cannot easily predict the target of every method call or field
access. Our analysis helps by generating an unambiguous
collection of classes and methods as the transitive closure of
control and data flows from entry classes.

Civet determines the classes and methods to be included in
the trusted domain via static bytecode analysis:
• Call graph analysis [55,56]: For each method, identifying

the classes and methods referenced.
• Points-to analysis [57–59]: For each field or local variable,

identifying the heap objects that are assigned, to determine
all the possible subtypes allocated for the field or local
variable if it is polymorphic.
We implement the static analysis described in Algorithm 1

using SOOT [60], the de facto bytecode analysis framework
for Java. We use the flow-insensitive, context-insensitive,
whole program analysis implemented in Spark [61], the
points-to analysis framework of Soot, with on-the-fly call
graph analysis (see the configuration in §9.4). The points-to
analysis is based on the main class specified by the user. We
use the points-to analysis to identify the possible argument
types to an entry method, or the possible targets of a polymor-
phic method. For classes that are not included in the whole
program analysis of Spark, such as classes explicitly loaded
by the JVM during initialization, we conservatively estimate
the points-to targets by considering all subclasses.

Algorithm 1: Static analysis for identifying trusted code
/* Extending the entry classes with input types */
Data: A set of entry classes E and included classes I

1 while E is different from the last iteration do
2 for c ∈ E do
3 for m ∈ public methods of c do
4 for o ∈ non-primitive arguments of m do
5 E← E ∪ classes(points-to(o))

/* Collecting required classes for the enclave */
6 Classes← E ∪ I; CG← /0;
7 while Classes is different from the last iteration do
8 for c ∈Classes do
9 for m ∈ methods of c do

10 for o. f ∈ field accesses in m do
11 if o is a class then OC←{o}
12 else OC← classes(points-to(o))
13 FC← classes(points-to(f))
14 Classes←Classes∪OC∪FC

15 for o.m′ ∈method calls in m do
16 if o is a class then OC←{o}
17 else OC← classes(points-to(o))
18 Classes←Classes∪OC
19 CG←CG∪{(c,m,c′,m′)|c′ ∈ OC}

/* Shredding unreachable methods */
20 Methods←{(c,m)|c ∈ E ∪ I,m∈ public methods of c}
21 while Methods is different from the last iteration do
22 for (c,m) ∈Methods do
23 for (c,m,c′,m′) ∈CG do
24 Methods←Methods∪ (c′,m′)

25 return (Classes,Methods)

Shredding unreachable methods. We incorporate a new
technique called Shredding to eliminate code that is unreach-
able at compile time. Shredding is different from partitioning
or program slicing because it does not change the control flow
of the enclave, and is more similar to dead code analysis [62].

We shred both classes and methods within the class to
reduce the footprint of enclave code. By shredding methods,
we can subsequently remove classes and methods which are
only used inside the unreachable methods. As described in
Algorithm 1, the analysis starts with entry classes and classes
listed by the <Included> rules, and then recursively includes
methods that are reachable inside the enclave. With points-
to analysis, we can conservatively identify methods that are
possible callees of a polymorphic invocation to a generic class
or an interface.

Static fields. The one exception to strict enclave isolation
is that enclave code in Civet may access static fields and
methods outside of an enclave. If a trusted class access a
static field or calls a static method inside the enclave, Civet

includes the target class inside the enclave. If a static field
is directly updated by another trusted class, Civet allows this
update to propagate out of the enclave, assuming it does not
violate any taint-tracking rules.

4.3 Security Discussion
Civet measures the integrity of the code included in enclaves
(Property I–Code Integrity and Remote Attestation). For each
partition/trusted domain, Civet generates a trusted JAR con-
taining signed classes and binaries. Each entry (a file or a
directory) in the JAR is securely hashed, with the list of en-
tries and hashes signed by the developer’s private key. This
prevents subsequent modifications of the JAR by anyone else.
The signature of each class is checked by the in-enclave Java
runtime, whereas the signature of each binary is checked by
the Graphene-SGX library OS. The trusted Java runtime will
only load classes and binaries from the trusted JAR.

5 Shielding Polymorphic Interfaces

This section explains how exposing a polymorphic, object-
oriented interface can lead to a type-confusion attack, and an
efficient type-checking scheme for reducing the risk.

5.1 Type Confusion Attack
Partitioning an application exposes a new attack surface at
the interface between the trusted and untrusted code. In the
case of OS-level interfaces, such as system calls, this led to an
initially surprising and, subsequently, widely explored topic
of Iago attacks [13, 14, 21, 26]. In a partitioned Java appli-
cation, where objects are passed into the enclave as inputs,
the complex behavior of polymorphic object-orientation is
ripe for Iago-style attacks. Specifically, attackers may pass a
polymorphic object as part of the input to the enclave code.
This can take the form of creating an object that violates class
invariants, or generating control flow that is not possible in
the original application.

Attack example: Tomcat. Figure 5 shows an example of
how a partitioning choice in an application can leave the
enclave open to attack, in this case in a partitioned Tom-
cat servlet [63]. This example is hypothetical, and selected
for clarity, as real-world examples may be more complex
and obscure. A Tomcat servlet typically receives a Request
object that stores the parameters of an HTTP request. For
convenience, Tomcat stores the POST message body in a
CoyoteInputStream object, i.e., a buffered stream, for the
servlet to read. A developer might decide to use a generic
class at the enclave interface, say changing the requirement
from a CoyoteInputStream to a generic inputStream
class. The code behavior is equivalent, and the interface
is arguably more flexible. However, an attacker can replace
the CoyoteInputStream with a subclass of InputStream,

class HttpResponder extends HttpServlet {
public void doPost(HttpServletRequest req,

HttpServletResponse resp) {
InputStream inputStream = req.getStream();
byte[] body = new byte[inputStream.available()];
inputStream.read(body); // Read POST body
resp.getWriter().write(body);

}}
class Request extends HttpServletRequest {

InputStream inputStream // This line is changed
= new CoyoteInputStream(new InputBuffer());

public InputStream getStream() { return inputStream; }
}

Enclave

HttpResponder

Request FileInputStream

getStream() read(buf)

JNI Method
to read

in-enclave FD

Tomcat server
(untrusted)

RPC
doPost(req, resp)

Request

doPost(req, resp)

InputCoyoteInputStream

FileInputStream

Replaced by
Attacker

RPCMethod callMember

Figure 5: An example in which a servlet (HttpResponder)
is partitioned into an enclave. An attacker can exploit the
polymorphic input of HttpResonder to force the class to
read from a shielded in-enclave file descriptor.

as long as this subclass is in the trusted domain. For example,
this request may be directed to a FileInputStream object
that is connected to a file that include sensitive data, and could
be exfiltrated by serving the request.

In general, this type of vulnerabilities is caused by partition-
ing the code such that a precondition or invariant is established
by code that ends up outside of the enclave. For instance, in a
monolithic application, one might have the invariant that one
only adds a stream to the Request class with one of a few
specific subtypes by auditing the instances of new, rather than
putting redundant assertions at every single method boundary.
When selecting a partition interface, it is easy to place these
invariant checks in the untrusted code. To the extent that we
can statically extract these invariants, Civet can automatically
harden the enclave interface.

5.2 Deep Type Checks on Enclave Inputs
In order to harden the enclave interface, Civet automatically
generates deep type checks on input objects. Civet uses mar-
shalling, or serialization, to pass input objects into enclaves,
and the enclave runs memory bounds checks on these input
buffers. In order to prevent possible type-confusion attacks,
Civet also implements a deep type check at the enclave bound-
ary. In the case of a complex object with other objects nested
underneath it, the enclave checks not just the type of the “root”
object, but also the type of every field or array element in
the object. A simple cast check (i.e., checking whether an

object is castable to a type) or a type comparison (e.g., “if
(o.getClass() != String.class) ...”) is insufficient
for preventing this type of attacks.

We assume that, if the user is partitioning an application,
the untrusted code is initially benign but may be compromised.
Thus, to generate type checks at the enclave boundary, Civet
currently uses the source code or byte code of the untrusted
portion to infer the set of subtypes that could be passed to
a given enclave API function could in the original, unparti-
tioned code. We call this set of types (and field subtypes) for
a given object a profile. We use this information to generate
the type checking code; it would be possible for an expert
developer to manually create this information if they did not
wish to mine it from application code.

One challenge is that this naïve representation of a profile
can grow exponentially large when an object contains a deep
hierarchy and many fields at each level. Worse, if a class
contains references to itself, or forms cyclic references among
multiple classes, the profile can grow indefinitely large. Self
and cyclic class references are common in practice.

Path-based type-checks. Instead of defining which types
can be part of an input, Civet defines which parts of an input
(permission object) that a type (permission subject) can be
instantiated and assigned to. For each type that can be instan-
tiated during input deserialization, Civet lists all the fields
and array elements that can be instantiated as the type. These
fields are represented as paths, as traversed from the root
object. The strategy is similar to a mandatory access control
(MAC) system, such as AppArmor [64] which has a default
deny policy, and the administrator can give a program explicit
access to files with certain path patterns. This strategy makes
it easy to make permission decisions sooner if the prefix of
the path does not match the policy.

We explain the type checks with the example in Figure 5.
Assume the static analysis determines that the original ap-
plication only assigns the CoyoteInputStream class to the
inputStream field of the input, of class Response. Civet
will generate the rules for instantiating this input:

• For CoyoteInputStream:
– ((Response)req).inputStream

• For Response:
– req (root object)

Based on these rules, any instantiation of a class that does
not match its rule will be rejected by Civet. For example, if
a FileInputStream object is assigned to inputStream of
req, the instantiation will be rejected because the class is not
permitted with the given path.

This scheme is efficient for objects with a complex struc-
ture. For example, in Hadoop, a TupleWritable object con-
tains an array of other Writable objects, including another
TupleWritable object. If we want to reject nested tuples
but allow tuples of LongWritable and Text, the following
rules will enforce such a policy:

• For LongWrtiable and Text:
– value (root object)
– ((TupleWritable)value).values[*]

(array elements if root object is a tuple)
• For TupleWritable:

– value (root object)

Array sizes and indices are indistinguishable in this
scheme, hence the wildcard ([*]) in the second rule for
LongWrtiable and Text. Extending or re-ordering the ele-
ments of an array does not increase the number of rules.

Complexity. We show that the path-based representation
simplifies type-checking. Assume that a class contains N
fields, and each field can be assigned to one of M subtypes.
The number of rules at the first level is O(MN), which is
significantly fewer than O(MN) in the simpler representation.
If we consider an object of D levels, the complexity of our
scheme is O(MND), also much simpler than O(MND).

Implementation. At build time, we assign a unique identi-
fier to each field of a class that is both: (1) a trusted class, and
(2) instantiated and assigned as part of an input to a method.
Our prototype uses a 32-bit identifier on the assumption that
a partitioned application will not have more than 232 fields
among all trusted classes, and could increase this limit if
needed. To compare the conditions, we generate a hash of all
the fields that have been visited from the root object. Note that
the hash must be collision-resistant, otherwise the attacker
may submit a malicious structure that collides with a permit-
ted hash. Ideally, we need to use a strong hash function, such
as SHA256; however, we observe that most objects in our use
cases never go deeper than 8 levels. Therefore, we just push
the field identifiers into a 32-byte buffer, and only hash the
buffer when the depth is larger than 8.

Compatibility. False negatives in the static analysis may
cause compatibility issues if a benign input is rejected by type-
checking. Our static analysis only excludes inputs that were
impossible in the original application. Among our application
examples (§9), no benign input from the original partitioned
code was rejected.

5.3 Security Discussion
The deep type checking described in this section ensures
Property II—Type integrity for enclave interfaces. Specifically,
Civet uses static analysis to generate a set of polymorphic
types that could happen in the original program, and checks
that only objects (or object hierarchies) within that set are
accepted as enclave inputs.

A limitation of the type checks is that we need to conserva-
tively approve input types based on the points-to analysis, as
well as overestimate classes loaded via reflection or loaded
internally by the JVM. This limitation leads to false positives,
in which Civet may permit an unexpected input type to an
entry method, which may be exploited for type confusion

attacks. We did not observe this issue in our case studies.

6 Declassifying Enclave Outputs

In this section we discuss the security challenges of explicitly
declassifying all outputs that can be potentially tainted by
sensitive data (Property III—Explicit data declassification).

6.1 Data Leakage
Preventing data leakage is a critical challenge for partitioning.
When data is decrypted and processed inside an enclave, it is
important that the data does not inadvertently make its way
back to the untrusted classes, except via explicit declassifica-
tion. For instance, a privacy-preserving function inside the
enclave may report safe results with differential privacy [65].
Developers of partitioned enclave applications have an addi-
tional burden of auditing the code for any paths that might
leak sensitive data outside of the enclave.

Polymorphism makes it difficult to simply inspect the code
statically or an object dynamically, and know whether it was
derived from sensitive bits. Developers do not necessarily
know whether invoking a method on an ObjectType calls the
method of its Class or the Subclass, which in turn may or
may not update a field in the object. A further challenge for
determining the data flow is the detection of the implicit data
flow under the effect of the control flow. Since polymorphism
and reflection also complicate the control flow, it becomes
even harder to predict the data flow of a Java application
without a dynamic taint-tracker [24, 66–73]. Therefore, we
argue that it is important to track both explicit and implicit
data flow within the enclaves that operate on sensitive data.

6.2 Dynamic Taint-Tracking
To ensure data confidentiality, Civet tracks data flows using
Phosphor [74], a dynamic taint-tracking framework. In Civet,
all the entry class objects and methods of shield classes are
marked as taint sources. Thus, all the objects which are de-
rived from instantiation of the entry classes or from shielding,
such as decrypted data or data provisioned from a secure chan-
nel, will be tainted. Phosphor propagates the taints through
explicit data flow, and optionally through implicit data flow
based on control flow. We added Phosphor as a phase of
the partition tool to instrument the classes in enclave.jar
(§4.1) after shredding. We run the Phosphor instrumenter
with the multiTaint option, and the controlTrack option
if the users choose to track the implicit flow.

Dynamic taint-tracking prevents developers from introduc-
ing vulnerabilities via buggy code that inadvertently leaks sen-
sitive data through data flows. The sink of the taint-tracking is
the function for marshaling returned objects, in order to block
any tainted object from being flowed out of the enclave, At
the boundary of the enclave, any tainted object unless the ob-

ject is explicitly declassified. We modify Phosphor such that
developers can specify a Declassify rule that can remove
taints on objects that are confirmed to contain no sensitive
data. In practice, we expect the developers to declassify an
object after sanitizing the object or encrypting the data.

We note that tracking implicit data flow is considerably
more expensive than tracking explicit flow; thus, we give the
user an option to disable this in a deployment run. Because
this is a tool primarily for understanding code behavior, there
are scenarios where this trade-off is sensible; there are also
scenarios where users will prefer more exhaustive checks.

6.3 Security Discussion
Dynamic taint-tracking complements the language safety of
Java by requiring any sensitive data that leaves the enclave
to be explicitly checked (Property III–Explicit data declas-
sification). The JVM ensures that sensitive code and data
inside the enclave remain in a hardware-protected memory
region. Taint tracking can catch cases where an output de-
rives from sensitive information, but the results were not
encrypted or checked against a different policy. We assume
the developer writes a declassifier that enforces appropriate
application-level policies.

7 Garbage Collection Optimization

Garbage collection (GC) is an essential feature of Java and
many managed languages. GC unburdens the programmer
from writing error-prone memory management code. GC
design and implementation of has a first-order impact on ap-
plication performance, yet off-the-shelf GC does not perform
well in enclaves. Civet contributes an optimized GC design
for the constraints of enclaves.

7.1 GC Design Challenges
The Civet JVM prototype is based on the OpenJDK 8 HotSpot
JVM, which uses a generational GC [75]. The HotSpot JVM
contains multiple GC implementations, each with different
advantages and resource requirements. In initial attempts
to run Java in an enclave, we found that no garbage collec-
tion strategy performed well within the constraints of SGX
enclaves. Thus, we started with a relatively straightforward
GC that we could understand and tune to work within an en-
clave. Specifically, we studied and tuned the Serial GC from
HotSpot—a "textbook" generational GC.

In Serial GC, the JVM typically divides the heap into two
generations: the young (defNew) and old (tenured) genera-
tions. The GC strategy is different for each generation, il-
lustrated in Figure 6. The young GC happens frequently
to recover memory from short-lived objects. Objects that
have survived several GC rounds in the young generation are
promoted to the old generation. Specifically, the young gener-

Figure 6: Two garbage collection approaches used in Se-
rial GC. A Copying approach evacuates living objects to a
reserved space, whereas a Mark-Sweep-Compact (MSC) ap-
proach separates the phases of discovering live objects from
heap compaction.

0X

2X

4X

6X

8X

10X

12X

14X

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112

G
C

 S
lo

w
d

o
w

n
 o

n
 S

G
X

Young / Old Generation Size (MB)

Young GC (Copying)

Old GC (Mark-Sweep-Compact)

LLC Size
(8MB)

EPC Size
(93.5MB)

Figure 7: Single-threaded, serial GC slowdown caused by
SGX, within the young generation (copying GC) and the old
generation (MSC), in respect to different generation sizes. For
each GC iteration, 80% of the objects are garbage-collected,
while the remaining are compacted or promoted.

ation uses a copying GC that traverses the heap and copies live
objects into a reserved space (called the To space) on the fly.
The underlying assumption is that the live objects will be few,
and it is simpler to just copy them than managed fragmented
free space. In contrast, the old generation uses a Mark-Sweep-
Compact (MSC) strategy, which consists of multiple passes
through the heap, and is optimized to minimize movement of
objects that are likely to survive.

We observe several problems for both the young and old
GCs in enclaves. We illustrate the issues using a simple
microbenchmark that targets a 20% object survival rate for
both generations, by repeatedly allocating and freeing a forest
of 5KB binary trees (each with 31 nodes), occupying 1MB of
the heap. Figure 7 shows the average slowdown on each GC
iteration in the young and old generations, as a function of
different generation sizes. We observe that the Copying GC
in the young generation has more slowdown in enclaves until
the generation size reaches ∼80MB, due to more LLC misses
during data movement. Note that LLC misses in enclaves
are expensive, as they involve decrypting and integrity check

Eden To From

Young Gen (< LLC) Middle Gen (< EPC) Old Gen (> EPC)

R

R R

R

R

R

Promotion Threshold (50%)

Dead
Object

Promote

Adjusted
Ref.

Figure 8: Civet proposes a GC strategy, with a middle gen-
eration as a middle ground before promoting object to old
generation. The middle GC follows a partial promotion strat-
egy, with an adjustable threshold.

for the data [13, 76]. When the generation size is close to or
larger than the EPC size, the slowdown on MSC becomes
significantly higher then the Copying GC due to an order-of-
magnitude higher number of page faults, which are even more
expensive than LLC misses.

We observe three performance regimes for GC, which re-
flect the underlying hardware limitations:
• If the generation fits inside the LLC (8MB on Intel E3-1280

v5), copying GC is even more efficient than MSC.
• If the generation fits in the enclave page cache (EPC—the

protected physical memory that is used inside enclaves),
the cost of GC is proportional to the size of the generation.

• When the generation size approaches the EPC size, MSC
becomes much worse than copying GC because of EPC
swapping. Currently, the EPC is limited to 93.5 MB of
usable memory; after this is exhausted, the OS must swap
the encrypted contents of the EPC to other DRAM or disk.
Some of the EPC must be used for the code and stack, so
there is an upward trend closer to 80 MB.

Prior work [13, 25] reports up to a 1000× slowdown for ran-
dom reads and writes in an enclave larger than the EPC. This
size limitation has not been enlarged on any later generations
of Intel CPUs. Because MSC-based GC traverses the heap
more times than the copying GC, it will incur more swapping
when the GC’ed space exceeds the EPC.

7.2 GC Optimization for Enclaves
The experiment above indicates three distinct performance
regimes for enclaves. Thus, we adopt a three-generation
design, where each generation has a target working set size:
(1) smaller than the LLC size (8MB), (2) between the LLC
size and the EPC size (93.5MB), and (3) larger than the EPC
size. The goal of this three-generation design is to minimize
cache misses in the young GC and the page faults in the old
GC. For the rest of the paper, we refer to these as the new,
middle, and old generations.

Figure 8 illustrates our three-generation GC design. The
middle generation adopts the same MSC strategy as the old
generation. Objects that survive the young generation get a

.000

1.000

2.000

3.000

4.000

5.000

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128GC
 La

te
nc
y
on

 S
GX

 (s
)

Live Objects Size (MB)

2-Gen Serial GC
3-Gen Serial GC (w/ Middle Gen)

Figure 9: Average GC latency (including all generations) on
SGX, in regards to the total live object sizes. The compar-
ison is between two-generation and three-generation serial
GCs. The heap size is 256 MB, with the young and middle
generations at 2 MB and 48 MB, respectively.

second chance of being reclaimed in the middle generation,
before being promoted to the old generation. Similar to the
young GC, the middle GC also walks the references from
the known roots, but does not traverse the unclaimed dead
objects in the old generation. This keeps the middle GC from
accessing objects outside of the EPC boundary and reduces
the number of page faults incurred by the GC.

To keep short-lived objects in the middle generation longer,
we set a promotion threshold to decide which objects should
be promoted to the old generation. The middle GC only
promotes objects when the size of the remaining live objects
surpasses a promotion threshold (e.g., 50% of the generation).
The promotion threshold is adjustable by users.

We further reduce memory accesses outside the enclave
by leveraging the remember set abstraction in the HotSpot
VM. We also noticed that after MSC, the adjust reference
phase scans the entire heap to identify and adjust references
to a compacted or promoted object, causing significant cache
misses and EPC swapping The remember set use a coarse-
grain bit map to track the region which contains recently
promoted objects to scan for references to younger genera-
tions. Our JVM updates the remember set during the marking
phase of GC, so that the middle GC only has to scan memory
regions that are known to contain references.

We implement our GC strategy on HotSpot JVM and mea-
sure the impact of the middle generation on the average GC
time. Figure 9 shows the average GC time of two-generation
and three-generation GCs. We use a randomized allocation
workload and adjust the total size of live objects, which re-
flects the effective space used by the application. The total
heap size is 256 MB and the young generation size is 2 MB.
Based on our tuning, the best size of the middle generation
is 48 MB and the remaining space is the old generation. The
results show that with our GC, the average GC time (including
middle and old GCs) is consistently 0.5–1.0 seconds faster
than Serial GC (20–89% improvement), at all live object sizes.

8 Runtime Implementation

This section describes the implementation of the Civet run-
time framework.

8.1 Civet Runtime Framework
Given the entry classes, our partitioning tool automatically
generates the RPC interfaces for entering and leaving enclaves.
The generated interfaces primarily serve two purposes: (1)
intercepting invocations to entry classes and seamlessly con-
verting them into RPCs, and (2) marshaling and verifying
the input and output objects for the entry classes. To reduce
the execution-time TCB and to improve RPC latency, Civet
directly generates bytecode for the RPC interface and sup-
porting code inside the enclave.

For marshaling objects in and out of enclaves, Civet uses
the Fast-serialization library [77], or fst (v2.50), instead of
using the built-in serialization API. fst generates a more
compact representation of each object; for instance, at run-
time, fst allows Civet to register all the classes needed for
marshaling both inside and outside the enclave, so that object
types can be represented numerically instead of as strings.
Furthermore, we use the off-heap serializer of fst, which
reduces the instantiation cost of marshaling buffers and re-
duces GC during RPCs. The off-heap buffers are allocated
per in-enclave worker thread, and are reused throughout the
enclave execution.

8.2 Reducing Framework TCB
The Civet framework contains several trusted components,
shown in Table 2. Civet includes a modified JVM, based on
OpenJDK 8 HotSpot runtime, which has a smaller TCB and
fits into the memory limitation of enclaves. This is a pre-
liminary effort—there are additional opportunities to further
shrink or partition the JVM:
• Garbage collector: Civet removes most of the garbage

collectors, such as G1GC and parallel scavenge GC, and
only keeps an optimized serial GC (§7.2).

• Compiler: the default option in Civet is ahead-of-time com-
pilation (AOT). AOT is time-consuming (∼20 minutes
to compiling 4,000 classes), but introduces no overhead
to the execution. For users who cannot compile the byte-
code ahead of time, Civet provides the options of including
the C1 (platform-generic) and/or C2 (architecture-specific)
compilers in the enclave; or using only the interpreter. The
former increases the in-enclave TCB, whereas the latter
introduces significant overheads (10–1000×).

• JVM-related classes: A large portion of the JVM function-
alities are implemented in Java classes. We can simply use
static analysis to include the classes needed by the TCB
and shred the others. Table 2 does not include these classes.

• JNI libraries: Finally, a large portion of the C++ code in the
OpenJDK code base contributes to the JNI library, such as

Civet components (language): Total LoC
Partition tool (Java) 3,611
Runtime framework (Java) 2,166
Runtime JNI (C++) 1,093
Phosphor framework (Java) 31,611

Modified runtime components: Original Partitioned (∆%)
JVM (libjvm) 593,159 303,826 (49%)
JNI (libjava, libzip, ...) 423,303 68,684 (84%)
Graphene-SGX 55,974 49,689 (11%)

Unmodified runtime components: Total LoC
GNU libc 2.19 1,008,773

Table 2: The complexity of the whole Civet framework and
the run-time TCB measured in LoC (lines of code), including
both modified and unmodified components.

libjava. We observe that a portion of the JNI library, espe-
cially the system-tier functionality, is perfect for partition-
ing outside the enclave. For example, FileInputStream
contains native methods to read a file. These JNIs are
originally shielded by Graphene-SGX, but can be moved
outside the enclave to reduce the TCB.
In total, Civet removes 49% of the JVM code and 84% of

the JNI code from the trusted computing base. To access OS
functionality from the enclave, Civet uses Graphene-SGX and
GNU libc, which could be further reduced in code size.

9 Case Studies and Evaluation

In this section, we evaluate the efficiency of Civet using three
use cases, to show the sensitivity of the TCB and performance
to the partition boundary chosen by the developers. We select
three applications that accept user-provided code in a some-
what modular design. Each of these applications varies in the
degree to which the interface for user-provided code matches
what should run in the enclave, and thus, the degree of dif-
ficulty in partitioning. In the case of Tomcat (§9.2), users
provide code at a granularity very close to what should go in
the enclave. In the cases of and Hadoop (§9.3) and GraphChi
(§9.3), the users provide code, but issues such as batching
inputs to the enclave require a more careful decision about
partitioning boundaries.

We also evaluate the cost of static analysis and the break-
downs of performance overheads using microbenchmarks.
Unless otherwise noted, we configure Phosphor’s taint-
tracking to only track explicit flows; tracking implicit flows
typically adds 10×, which dwarf other overheads from Civet.

All experiments are collected on a Supermicro SYS-5019S-
M server. The CPU is a 8-core 3.70 GHz Intel Xeon E3-1280
CPU, with microcode patched for Spectre mitigation. Out
of 32GB RAM on the machine, 93.5MB is dedicated to en-
claves. The system runs Ubuntu 16.04.4 LTS server with
Linux kernel 4.15.0-58-generic, with Page Table Isolation

Grep.main(String[])
ToolRunner.run(Configuration, Configured, String[])

Grap.run(String[])
Job.setMapperClass(Class<?> class)
Job.waitForCompletion()

(new process) YarnChild.main(String[])
(new thread) YarnChild$2.run()

MapTask.run()
MapTask.runNewMapper()

RegexMapper.map(Key, Text, Context)

Figure 10: The call graph in Hadoop with RegexMapper.

Selected entry methods Shredding #C #M LoC ∆%

Before partitioning 68.5K 589.7K 7.2M

1© MapTask.*
class 12.9K 115.3K 1.5M 79%

method 4.3K 20.7K 372.5K 95%

2© RegexMapper.*
class 4.2K 38.0K 509.2K 93%

method 2.1K 12.1K 247.8K 96%

Table 3: Partitioning results of Civet for Hadoop, partitioned
with two boundaries and measured in classes (#C), methods
(#M), and lines of code (LoC). For both cases, AESCipher
and PCBC are explicitly included for dynamic loading.

(PTI) enabled. The Civet implementation is based on Open-
JDK v1.8.0_71, Phosphor v0.0.4 [24], Intel SGX Linux SDK
and driver v2.3 [78], and Graphene-SGX v0.6 [14].

9.1 Hadoop
Hadoop [11] is a widely used framework for distributed com-
puting and big data. We choose the regular expression parser
(RegexMapper) as an example, but the usage can be gen-
eralized to other Hadoop applications. Running regular ex-
pression parsing inside enclaves is beneficial for protecting
sensitive data that might be processed in a distributed manner,
such as system or network logs.

Hadoop already has a modular architecture, and is eas-
ily partitioned with Civet. Coarse-grained partitioning at
the main function is not practical, because Hadoop is multi-
process, illustrated in Figure 10. A more natural division
point is within a worker (or process): 1© MapTask.run()
as a generic boundary that can include any mapper; 2©
RegexMapper.map() as the mapper class itself. Although
the former is more generic, the latter can have a smaller TCB.

Figure 11 shows the execution time of searching a regular
expression inside a large, encrypted authentication log (1GB),
using RegexMapper as the partition boundary. The sample
is encrypted, line-by-line with the line number as the nonce
for encryption. We pass lines of the log into the enclave
one line at-a-time, because there is no natural division point
in the code that implements batching. In future work, one
could optimize this code by batching the inputs to the mapper.

0

25

50

75

100

125

4 8 16 32 64 128 256

E
xe

c.
 T

im
e

(s
)

Number of Splits in HDFS

Native Civet+SGX

Civet+SGX+TC Civet+SGX+TC+TT

Figure 11: End-to-end execution time of the Hadoop regular
expression parser to process 1GB of encrypted authentication
logs. Lower is better. For Civet, only the mapper is partitioned
into enclaves. We evaluate Civet performance with SGX, deep
input type checks (TC), and taint-tracking without explicit
flow (TT). The Civet and native workloads both run on a
single-node, full-featured Hadoop v2 framework.

Selected entry methods Shredding #C #M LoC ∆%

Before partitioning 34.5K 276.9K 3.6M

HttpResponder.*
class 4.2K 37.9K 508.3K 77%

method 2.0K 11.4K 240.9K 93%

Table 4: Partitioning results for Tomcat, measured in classes
(#C), methods (#M), and lines of code (LoC). RSACipher
and RSAKeyPairGenerator are expliclity included for dy-
namic loading.

However, this has little impact on execution time because
our design does not synchronously context switch between
enclave and non-enclave execution; rather, Civet follows an
exitless pattern. There is a cost of additional CPU cycles (off
the critical path) to this design, which batching could reduce.

Hadoop determines the number of mappers and reducers
for a given workload based on how many “splits” the data
is divided into inside HDFS. We experiment with split sizes
ranging from 256MB to 4MB. We observe that, as the number
of splits increases well beyond the number of actual cores,
the overhead of scheduling degrades performance more than
any SGX-specific factor. Civet adds only 16–22% to the
end-to-end latency when running with SGX and deep input
type checks but without taint-tracking. The overhead of type
checks is marginal because of the integration with the class
instantiation of Fast-serialization. If taint-tracking is enabled
with only explicit flow tracking, the overhead is 70–80%.
Furthermore, running a Hadoop task partitioned with Civet is
generally as scalable as native.

9.2 Tomcat

Tomcat [63] is a web server for hosting Java servlets in a
multi-tenant environment. A servlet is usually written to parse
HTTP requests, and can be a building block for microservices.
We partition an “echo” servlet into an enclave, which signs

0

1

2

3

1 2 4 8 16 32 64

R
es

p
. T

im
e

(m
s)

of Concurrent Requests

Native Civet+SGX+TC

Figure 12: Average HTTP response time of a request-signing
Tomcat servlet partitioned and executed by Civet, with SGX
and shielded by type checks (TC), compared to native. Lower
is better. The HTTP requests are issued by ab (ApacheBench),
with HTTP request concurrency up to 64.

the HTTP requests from the users using RSA and returns a
certificate in the response. This is another good fit for Civet,
because the servlet needs to access a secret key to sign the
certificate. Thus, tenants do not need to expose their secret
keys to the web server or other servlets. Table 4 shows the
partitioning efficiency for Tomcat.

Figure 12 shows the average latency to sign requests in a
servlet, as a function of the number of concurrent requests.
In the Tomcat use case, we observe that the overhead of
introducing an enclave in Civet is nearly negligible. The
overheads are not SGX-specific, and can be improved by
selecting a more scalable configuration for Tomcat.

9.3 GhaphChi
We use GraphChi [79] as more challenging case to partition.
We use the page rank program in GraphChi as a running ex-
ample. GraphChi is an in-memory framework for processing
large graphs, by sharding vertex and edge data of a graph. The
framework includes extensible interfaces for plugging graph
algorithms. The core engine, GraphChiEngine, is tuned for
parallel computing with multiple threads that reuse the graph
data cached in the DRAM. We demonstrate the sensitivity
to the effectiveness of partitioning using three case studies
shown in Figure 13 and evaluated in Table 5.

The simplest, most coarse-grained choice (1©) is partition-
ing at the main function, Pagerank.main. This choice will
result in a relatively large TCB and the entire program will
run inside the enclave throughout the execution. Although
this choice does not provide any benefit of partitioning, Civet
can still help identify the required classes and methods, and
shrink the class libraries.

A finer-grained choice (2©) is to partition at each graph
operation, e.g, Pagerank.update(). This method updates
the global GraphChiContext with the pagerank contribution
of each vertex. This approach will only process one vertex per
enclave transition, and is arguably too fine-grained. Worse
yet, the input to Pagerank.update() is a ChiVertex object,
which only contains a pointer to the data blocks; this will
require copying the entire data blocks into the enclave for
the pointer to be valid. Although this choice is fine-grained
in terms of the TCB, the enclave memory footprint is just

class GraphChiEngine{
 void run(GraphChiProgram prog){
 ...
 ChiVertex[] vertices
 = new ChiVertex[nvertices];
 ...

 }
}

ThreadPoolExecutor

Job Queue
(LinkedBlockingQueue) Worker

Threads

new Runnable(){
 void run() {
 for(ChiVertex v: vertices)
 prog.update(v, ctx);
 }
}

class Pagerank
 extends GraphChiProgram{

 void main(String[] args)

}

ChiVertex.getValue()

BlockManager
.dereference(
ChiPointer ptr)

➀

➁
➂

submit()

run()

update()

run()

poll()

void update(
 ChiVertex vertex,
 GraphChiContext ctx)

}

Class boundary

}

Partition boundary Call graph

Figure 13: A simplified call graph for the GraphChi page rank
program. Execution starts with Pagerank.main(), followed
by GraphChiEngine.run(). GraphChiEngine eventually
submits multiple jobs of running the Pagerank.update()
by the worker threads. We show three possible choices of
partition boundary in GraphChi.

Selected entry methods Shredding #C #M LoC ∆%

Before partitioning 47.1K 419.5K 4.6M

1© Pagerank.main
Class 8.7K 72.5K 1.1M 75%

Method 3.0K 14.5K 280.2K 94%

2© Pagerank.update
Class 8.7K 72.5K 1.1M 75%

Method 2.3K 12.2K 250.2K 95%

3©
GraphChiEngine$3.*
GraphChiEngine$2.* Class 8.7K 72.5K 1.1M 75%

Method 2.3K 12.2K 250.2K 95%

Table 5: Partitioning results for GraphChi Pagerank, parti-
tioned with three boundaries and measured in classes (#C),
methods (#M), and lines of code (LoC). For all three cases,
AESCipher is explicitly included for dynamic loading.

as large as does not reduce the memory footprint compared
to coarser-grained choices. Note that with only class-level
shredding, the TCB is the same as 1© because the same set of
classes are referenced from the entry classes. With method-
level shredding, Civet further reduces ∼30K LoC in 2©.

A third option (3©) is to partition at the granularity of
a batch of work, with enough inputs to amortize the en-
clave transition cost. In the case of GraphChi, chunks
of graph data are submitted as Runnables to the work-
ers. These Runnables are defined as inner classes called
GraphChiEngine$2 and GraphChiEngine$3. As shown
in Table 5, partitioning at these classes seemingly generates
the same TCB as partitioning at Pagerank.update, but per-
forms strictly better at run-time.

Figure 14 shows the execution time processing the page

0

300

600

900

1200

1500

4 8 16 32 64 128 256

E
xe

c.
 T

im
e

(s
)

Number of Shards in GraphChi

Native

Civet+SGX+TC (Pagerank.update)

Civet+SGX+TC (GraphChiEngine$2/$3.*)

Figure 14: Execution time of the GraphChi page rank pro-
gram. For Civet, we tested 2 different choices of partition-
ing boundary, one with Pagerank.update and one with
GraphChiEngine$2/$3.*. Both encrypt the graph states
and are shielded by type checks (TC).

(Entry methods)
Workloads

cost
DRAM

Processing time

analysis
Points-to Shredding Phosphor & signing

Packaging

(a) Hadoop (2©) 4.5 GB 46s 17s 6s 4s
(b) Tomcat (1©) 2.5 GB 11s 11s 6s 4s
(c) GraphChi (3©) 3.4 GB 21s 11s 6s 4s

Table 6: DRAM cost and processing time (for points-to anal-
ysis, shredding, Phosphor instrumentation, packaging, and
class signing) of Civet’s partition tool. Lower is better.

ranks of the LiveJournal social network [80]. The data set is
∼1.1GB, with 4 million vertices and 69 million edges. Our
example shields the partition by encrypting the intermediate
graph states (e.g., in and out edges) cached in ChiVertex
objects. The graph itself is loaded through the file system and
can be shielded by the library OS.

We partition the page rank program with the two finer-
grained options. We observe that the GraphChi program
caches the vertex data and edge data inside the DRAM, using
32768 raw blocks. GraphChi also assigns a memory budget
for each job, which decides the range of vertex data to be pro-
cessed. We reduce the configuration to using 1024 raw blocks
and 16MB budget per job, to reduce the memory footprint and
RPC overhead. When partitioned with Pagerank.update,
the overhead can be up to 8.2–12.8× compared to native. Par-
titioning at GraphChiEngine$2/$3 lowers the overhead to
1.6–2.5×, due to fewer enclave RPCs.

Performance is generally insensitive to the number of
shards, except at very high numbers. Although fewer shards
implies fewer RPCs, any savings here are offset by the cost
of marshalling a larger data set. Thus, execution time is rela-
tively flat until 64 shards, at which point the cost of additional
RPCs dominates and drives up execution time.

AES +/- O RSA +/- O FFT +/- O

Native .3 .0 475.9 .7 1.6 .1

Civet 5.3 .0 15.5× 713.8 .7 0.5× 14.8 .1 8.0×

Compute 4.0 .4 11.4× 671.3 .5 0.4× 7.4 .1 3.5×
Input 0.4 .5 19.1 .3 2.8 .0

Output 1.0 .0 23.3 1.1 4.5 .1

w/Phosphor 8.6 .1 27.7× 1161.5 9.1 1.3× 16.9 .3 9.6×
w/ Implicit flow 22.7 .2 67.8× 4050.6 28.2 7.5× 19.6 .5 11.2×

Table 7: Execution time (in microseconds) of each method
and the breakdown of latency in Civet.

9.4 Static Analysis

Table 6 reports the DRAM cost and the processing time for
partitioning a Java application. We implement the Civet par-
titioning tool with Soot 3.3.0 and Apache Byte Code Engi-
neering Library (BCEL) 6.2. Partitioning millions lines of
Java code takes up to ∼1 minute and 4.5GB of DRAM in
our examples. A significant portion of the partitioning time
is spent on whole-program points-to analysis. Our Spark
configuration includes both application and library classes,
and uses on-the-fly call graph analysis and a worklist-based
propagation algorithm.

9.5 Microbenchmarks

Table 7 shows the execution time of several microbenchmarks:
AES, RSA, and FFT, each of which demonstrate a different
performance pattern for partitioned enclave execution. For
each of the workloads, we break down the overheads into the
computation inside an enclave, and the latency of moving
inputs and outputs across the enclave boundary. We note that
Native does not incur the cost of moving inputs and outputs.

RSA has the lowest overhead among the three, as the work-
load is the most computation-intensive. For AES, the inputs
and outputs are also small, yet the computation itself suf-
fers up to 11.4× overhead. The difference is that execution
outside the enclave can make better use of the AES-NI instruc-
tions. FFT demonstrates a relatively data-intensive pattern,
and the overhead of transitioning the inputs and outputs is
4.5× in total. Phosphor incurs overhead because of the ad-
ditional instrumentation and runtime tracing. It performs
worst in the AES benchmark (27.7× and 67.8×, without and
with implicit flow tracking, respectively), which is the least
compute-intensive among the three, showing that the over-
head of taint-tracking (with Phosphor) dominates the running
time. In contrast, the taint-tracking incurs lower overheads in
the more compute-intensive RSA and FFT benchmarks.

9.6 Discussion

The three case studies show the challenges to creating a se-
cure and efficient partition: one must consider not just points

to divide the code, but also the data flow and the optimal
granularity for moving data in and out of an enclave. Our
results show that Civet is very effective at reducing the code
footprint for an enclave partition—removing 75% of the code
even in the coarsest partition.

In general, Civet introduces an acceptable overhead, end-
to-end, for applications. That said, our microbenchmarks
indicate up to an 15.5.× overhead on a short computation
(AES); thus, optimization such as batching inputs are impor-
tant to overall performance. Finally, adding dynamic tracking
of implicit flows effected by the control flow is considerably
more expensive than the rest of Civet. We leave exploration
of more efficient implicit flow tracking for future work.

10 Conclusion

This paper presents an enclave-aware JVM variant and a
framework for partitioning a large application onto enclaves.
Civet leverages language features to help developers reason
about the code that is and is not in the enclave. Simply drop-
ping a managed language runtime in SGX incurs an order-of-
magnitude slowdown. Civet also minimizes the code footprint
in the enclave, as well as adapting the garbage collector to the
hardware peculiarities of SGX.

Acknowledgments

We thank the anonymous reviewers, Mike Bond, and our
shepherd, Tuba Yavuz, for insightful comments on earlier
versions of this work. This work was supported in part by NSF
grants CNS-1228839, CNS-1405641, CNS-1700512, NSF
CISE Expeditions Award CCF- 1730628, as well as gifts from
the Sloan Foundation, Alibaba, Amazon Web Services, Ant
Financial, Arm, Capital One, Ericsson, Facebook, Google,
Intel, Microsoft, Scotiabank, Splunk and VMware. Bhushan
Jain was supported in part by an IBM Ph.D. Fellowship. Part
of this work was done while Tsai, Jain, and Porter were at
Stony Brook University, and while Tsai was at UC Berkeley.
McAvey’s current affiliation is with Apple; his contributions
were primarily made while a student at Hendrix college. We
thank Bozhen Liu for the help with the Soot framework.

References

[1] Frank McKeen, Ilya Alexandrovich, Alex Berenzon,
Carlos V. Rozas, Hisham Shafi, Vedvyas Shanbhogue,
and Uday R. Savagaonkar. Innovative instructions and
software model for isolated execution. In HASP, 2013.

[2] AMD secure encrypted virtualization. https:
//developer.amd.com/amd-secure-memory-
encryption-sme-amd-secure-encrypted-
virtualization-sev/.

https://developer.amd.com/amd-secure-memory-encryption-sme-amd-secure-encrypted-virtualization-sev/
https://developer.amd.com/amd-secure-memory-encryption-sme-amd-secure-encrypted-virtualization-sev/
https://developer.amd.com/amd-secure-memory-encryption-sme-amd-secure-encrypted-virtualization-sev/
https://developer.amd.com/amd-secure-memory-encryption-sme-amd-secure-encrypted-virtualization-sev/

[3] David Lie, Chandramohan A Thekkath, and Mark
Horowitz. Implementing an untrusted operating system
on trusted hardware. ACM SIGOPS Operating Systems
Review, 2003.

[4] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanc-
tum: Minimal hardware extensions for strong software
isolation. In USENIX Security, volume 16, 2016.

[5] Felix Schuster, Manuel Costa, Cédric Fournet, Christos
Gkantsidis, Marcus Peinado, Gloria Mainar-Ruiz, and
Mark Russinovich. VC3: Trustworthy data analytics in
the cloud using SGX. In IEEE S&P, 2015.

[6] Wenting Zheng, Ankur Dave, Jethro G. Beekman,
Raluca Ada Popa, Joseph E. Gonzalez, and Ion Sto-
ica. Opaque: An oblivious and encrypted distributed
analytics platform. In NSDI, 2017.

[7] Stefan Brenner, Colin Wulf, David Goltzsche, Nico We-
ichbrodt, Matthias Lorenz, Christof Fetzer, Peter Piet-
zuch, and Rüdiger Kapitza. SecureKeeper: Confidential
ZooKeeper using Intel SGX. In Proceedings of the 17th
International Middleware Conference, 2016.

[8] David Goltzsche, Colin Wulf, Divya Muthukumaran,
Konrad Rieck, Peter Pietzuch, and Rüdiger Kapitza.
TrustJS: Trusted client-side execution of JavaScript. In
Proceedings of the 10th European Workshop on Systems
Security, 2017.

[9] Mark Russinovich. Introducing Azure confidential
computing. https://azure.microsoft.com/en-
us/blog/introducing-azure-confidential-
computing/, 2017 September.

[10] Pratheek Karnati and Karna Bojjireddy. Data-in-use
protection on IBM Cloud – IBM, Intel, and Fortanix
partner to keep enterprises secure to the core.

[11] Apache Hadoop. http://hadoop.apache.org/.

[12] Andrew Baumann, Marcus Peinado, and Galen Hunt.
Shielding applications from an untrusted cloud with
Haven. In OSDI, 2014.

[13] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas
Knauth, Andre Martin, Christian Priebe, Joshua Lind,
Divya Muthukumaran, Daniel O’Keeffe, Mark L. Still-
well, David Goltzsche, Dave Eyers, Rüdiger Kapitza,
Peter Pietzuch, and Christof Fetzer. SCONE: Secure
Linux containers with Intel SGX. In OSDI, 2016.

[14] Graphene library OS. http://github.com/
oscarlab/graphene.

[15] SGX-LKL. https://github.com/lsds/sgx-lkl.

[16] Chia-Che Tsai, Donald E. Porter, and Mona Vij.
Graphene-SGX: A practical library os for unmodified
applications on SGX. In USENIX ATC, 2017.

[17] Nuno Santos, Himanshu Raj, Stefan Saroiu, and Alec
Wolman. Using arm trustzone to build a trusted lan-
guage runtime for mobile applications. In ASPLOS,
2014.

[18] Joshua Lind, Christian Priebe, Divya Muthukumaran,
Dan O’Keeffe, Pierre-Louis Aublin, Florian Kelbert,
Tobias Reiher, David Goltzsche, David Eyers, Rudiger
Kapitza, Christof Fetzer, and Peter Pietzuch. Glamdring:
Automatic application partitioning for Intel SGX. In
USENIX ATC, 2017.

[19] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and
Yubin Xia. Thwarting memory disclosure with efficient
hypervisor-enforced intra-domain isolation. In CCS,
2015.

[20] ARM TrustZone. http://www.arm.com/products/
processors/technologies/trustzone/.

[21] Stephen Checkoway and Hovav Shacham. Iago attacks:
Why the system call API is a bad untrusted RPC inter-
face. In ASPLOS, 2013.

[22] CWE-843: Access of resource using incompatible type
(’type confusion’). https://cwe.mitre.org/data/
definitions/843.html.

[23] Gang Tan and Jason Croft. An empirical security study
of the native code in the JDK. In USENIX Security,
2008.

[24] Phosphor: Dynamic taint tracking for the JVM.
https://github.com/Programming-Systems-
Lab/phosphor.

[25] Meni Orenbach, Pavel Lifshits, Marina Minkin, and
Mark Silberstein. Eleos: Exitless OS services for SGX
enclaves. In EuroSys, 2017.

[26] Shweta Shinde, Dat Le Tien, Shruti Tople, and Prateek
Saxena. PANOPLY: Low-TCB Linux Applications
With SGX Enclaves. In NDSS, 2017.

[27] Software Guard Extenstions (SGX) SDK for Linux.

[28] sgx-utils. https://github.com/jethrogb/sgx-
utils.

[29] Rust SGX SDK. https://github.com/baidu/
rust-sgx-sdk.

[30] Konstantin Rubinov, Lucia Rosculete, Tulika Mitra, and
Abhik Roychoudhury. Automated partitioning of An-
droid applications for trusted execution environments.

https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing/
https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing/
https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing/
http://hadoop.apache.org/
http://github.com/oscarlab/graphene
http://github.com/oscarlab/graphene
https://github.com/lsds/sgx-lkl
http://www.arm.com/products/processors/technologies/trustzone/
http://www.arm.com/products/processors/technologies/trustzone/
https://cwe.mitre.org/data/definitions/843.html
https://cwe.mitre.org/data/definitions/843.html
https://github.com/Programming-Systems-Lab/phosphor
https://github.com/Programming-Systems-Lab/phosphor
https://github.com/jethrogb/sgx-utils
https://github.com/jethrogb/sgx-utils
https://github.com/baidu/rust-sgx-sdk
https://github.com/baidu/rust-sgx-sdk

In IEEE/ACM 38th International Conference on Soft-
ware Engineering (ICSE), 2016.

[31] Adrien Ghosn, James R. Larus, and Edouard Bugnion.
Secured routines: Language-based construction of
trusted execution environments. In USENIX ATC, 2019.

[32] Stefan Brenner, Tobias Hundt, Giovanni Mazzeo, and
Rüdiger Kapitza. Secure cloud micro services using
Intel SGX. In IFIP International Conference on Dis-
tributed Applications and Interoperable Systems, 2017.

[33] Marcela S Melara, Michael J Freedman, and Mic Bow-
man. EnclaveDom: Privilege separation for large-TCB
applications in trusted execution environments. arXiv
preprint arXiv:1907.13245, 2019.

[34] Michiaki Tatsubori, Toshiyuki Sasaki, Shigeru Chiba,
and Kozo Itano. A bytecode translator for distributed
execution of “legacy” Java software. In Proceedings
of the 15th European Conference on Object-Oriented
Programming, 2001.

[35] Eli Tilevich and Yannis Smaragdakis. J-Orchestra: Au-
tomatic Java application partitioning. In Proceedings
of the 16th European Conference on Object-Oriented
Programming, 2002.

[36] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom,
and Andrew C. Myers. Untrusted hosts and confiden-
tiality: Secure program partitioning. In SOSP, 2001.

[37] Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi,
K. Vikram, Lantian Zheng, and Xin Zheng. Secure web
applications via automatic partitioning. In SOSP, 2007.

[38] M Miller. Robust composition: Towards a unified ap-
proach to access control and concurrency control 2006.
Johns Hopkins: Baltimore, MD, page 302, 2006.

[39] Adrian Mettler, David A. Wagner, and Tyler Close. Joe-
E: A security-oriented subset of java. In NDSS, 2010.

[40] Fred Spiessens and Peter Van Roy. The oz-e project:
Design guidelines for a secure multiparadigm program-
ming language. In International Conference on Multi-
paradigm Programming in Mozart/OZ, 2004.

[41] Marc Stiegler and Mark Miller. How emily tamed the
caml. Hewlett Packard Labs Tech Report, 2006.

[42] Raoul Strackx and Frank Piessens. Ariadne: A minimal
approach to state continuity. In USENIX Security, 2016.

[43] Yuanzhong Xu, Weidong Cui, and Marcus Peinado.
Controlled-channel attacks: Deterministic side chan-
nels for untrusted operating systems. In IEEE S&P,
2015.

[44] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank
Piessens, and Raoul Strackx. Telling your secrets with-
out page faults: Stealthy page table-based attacks on
enclaved execution. In USENIX Security, 2017.

[45] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko,
Kari Kostiainen, Srdjan Capkun, and Ahmad-Reza
Sadeghi. Software Grand Exposure: SGX cache attacks
are practical. In 11th USENIX Workshop on Offensive
Technologies (WOOT 17), 2017.

[46] Marcus Hähnel, Weidong Cui, and Marcus Peinado.
High-resolution side channels for untrusted operating
systems. In USENIX ATC, 2017.

[47] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim,
Hyesoon Kim, and Marcus Peinado. Inferring fine-
grained control flow inside SGX enclaves with branch
shadowing. In USENIX Security, 2017.

[48] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian
Zhang, XiaoFeng Wang, Vincent Bindschaedler, Haixu
Tang, and Carl A. Gunter. Leaky cauldron on the dark
land: Understanding memory side-channel hazards in
SGX. In CCS, 2017.

[49] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre
attacks: Exploiting speculative execution. In IEEE S&P,
2018.

[50] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisen-
barth. CacheZoom: How SGX amplifies the power of
cache attacks. In CHES, 2017.

[51] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel,
and Tilo Müller. Cache attacks on Intel SGX. In Euro
S&P, 2017.

[52] Li Li, Tegawendé F. Bissyandé, Damien Octeau, and
Jacques Klein. DroidRA: Taming reflection to support
whole-program analysis of android apps. In Proceed-
ings of the 25th International Symposium on Software
Testing and Analysis, 2016.

[53] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oues-
lati, and Mira Mezini. Taming reflection: Aiding static
analysis in the presence of reflection and custom class
loaders. In Proceedings of the 33rd International Con-
ference on Software Engineering, 2011.

[54] Paulo Barros, Rene Just, Suzanne Millstein, Paul Vines,
Werner Dietl, Marcelo dAmorim, and Michael D. Ernst.
Static analysis of implicit control flow: Resolving java
reflection and android intents. In Proceedings of the
2015 30th IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE), 2015.

[55] B. G. Ryder. Constructing the call graph of a program.
IEEE Transaction of Software Engineering., May 1979.

[56] Mark Weiser. Program slicing. In Proceedings of
the International Conference on Software Engineering
(ICSE), 1981.

[57] Lars Ole Andersen. Program Analysis and Specializa-
tion for the C Programming Language. PhD thesis,
Johns Hopkins University, 1994.

[58] Bjarne Steensgaard. Points-to analysis in almost lin-
ear time. In Proceedings of the 23rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, 1996.

[59] Manuvir Das. Unification-based pointer analysis with
directional assignments. In PLDI, 2000.

[60] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie
Hendren, Patrick Lam, and Vijay Sundaresan. Soot - a
Java bytecode optimization framework. In Proceedings
of the Conference of the Centre for Advanced Studies on
Collaborative Research, 1999.

[61] Ondřej Lhoták and Laurie Hendren. Scaling Java points-
to analysis using SPARK. In Proceedings of the 12th
International Conference on Compiler Construction,
2003.

[62] Jens Knoop, Oliver Rüthing, and Bernhard Steffen. Par-
tial dead code elimination. In PLDI, 1994.

[63] Apache Tomcat. http://tomcat.apache.org/.

[64] AppArmor. http://wiki.apparmor.net/.

[65] Cynthia Dwork. Differential privacy. In Proceed-
ings of the 33rd international conference on Automata,
Languages and Programming-Volume Part II. Springer-
Verlag, 2006.

[66] Edward J. Schwartz, Thanassis Avgerinos, and David
Brumley. All you ever wanted to know about dynamic
taint analysis and forward symbolic execution (but might
have been afraid to ask). In IEEE S&P, 2010.

[67] Vivek Haldar, Deepak Chandra, and Michael Franz. Dy-
namic taint propagation for Java. In Proceedings of
the 21st Annual Computer Security Applications Con-
ference, 2005.

[68] James Clause, Wanchun Li, and Alessandro Orso. Dy-
tan: A generic dynamic taint analysis framework. In
Proceedings of the 2007 International Symposium on
Software Testing and Analysis, 2007.

[69] Wei Xu, Sandeep Bhatkar, and R. Sekar. Taint-enhanced
policy enforcement: A practical approach to defeat a
wide range of attacks. In USENIX Security, 2006.

[70] Winnie Cheng, Qin Zhao, Bei Yu, and Scott Hiroshige.
TaintTrace: Efficient flow tracing with dynamic binary
rewriting. In Proceedings of the 11th IEEE Symposium
on Computers and Communications, 2006.

[71] Nicholas Nethercote and Julian Seward. Valgrind: a
framework for heavyweight dynamic binary instrumen-
tation. In ACM Sigplan notices, 2007.

[72] William Enck, Peter Gilbert, Seungyeop Han, Vasant
Tendulkar, Byung-Gon Chun, Landon P. Cox, Jaeyeon
Jung, Patrick McDaniel, and Anmol N. Sheth. Taint-
Droid: An information-flow tracking system for real-
time privacy monitoring on smartphones. ACM Trans.
Comput. Syst., 2014.

[73] James Newsome and Dawn Song. Dynamic taint anal-
ysis for automatic detection, analysis, and signature—
generation of exploits on commodity software. In NDSS,
2005.

[74] Jonathan Bell and Gail Kaiser. Phosphor: Illuminat-
ing dynamic data flow in commodity jvms. In ACM
SIGPLAN Notices. ACM, 2014.

[75] Java garbage collection basics. http:
//www.oracle.com/webfolder/technetwork/
tutorials/obe/java/gc01/index.html.

[76] Meysam Taassori, Ali Shafiee, and Rajeev Balasubramo-
nian. VAULT: Reducing paging overheads in SGX with
efficient integrity verification structures. In ASPLOS,
2018.

[77] FST: fast java serialization drop in-replacement.
https://github.com/RuedigerMoeller/fast-
serialization.

[78] Intel® Software Guard Extensions for Linux* OS -
SGX driver. http://github.com/01org/linux-
sgx-driver.

[79] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin.
GraphChi: Large-scale graph computation on just a
PC. In OSDI, 2012.

[80] LiveJournal social network dataset.
https://snap.stanford.edu/data/soc-
LiveJournal1.html.

http://tomcat.apache.org/
http://wiki.apparmor.net/
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
https://github.com/RuedigerMoeller/fast-serialization
https://github.com/RuedigerMoeller/fast-serialization
http://github.com/01org/linux-sgx-driver
http://github.com/01org/linux-sgx-driver
https://snap.stanford.edu/data/soc-LiveJournal1.html
https://snap.stanford.edu/data/soc-LiveJournal1.html

	Introduction
	Challenges
	Goals and Contributions

	Related Work
	Threat Model and Security Properties
	Partitioning Class Libraries
	The Partitioning Workflow
	Identifying Trusted Code
	Security Discussion

	Shielding Polymorphic Interfaces
	Type Confusion Attack
	Deep Type Checks on Enclave Inputs
	Security Discussion

	Declassifying Enclave Outputs
	Data Leakage
	Dynamic Taint-Tracking
	Security Discussion

	Garbage Collection Optimization
	GC Design Challenges
	GC Optimization for Enclaves

	Runtime Implementation
	Civet Runtime Framework
	Reducing Framework TCB

	Case Studies and Evaluation
	Hadoop
	Tomcat
	GhaphChi
	Static Analysis
	Microbenchmarks
	Discussion

	Conclusion

